Faculty of Computer Science
Universitas Indonesia

HANDBOOK
OF INTERNATIONAL UNDERGRADUATE PROGRAM
IN COMPUTER SCIENCE/INFORMATION TECHNOLOGY
Table of Contents

Table of Contents ... 2

1. About International Undergraduate Program in Computer Science/Information Technology 3

2. Curriculum of International Undergraduate Program in Computer Science/Information Technology .. 5

3. Grading System ... 8

4. Study Evaluation & Graduation ... 11

5. Appendix .. 12

5.1 Syllabus .. 12

- Advanced Programming ... 13
- Algorithms Design & Analysis .. 15
- Automata & Theory of Languages ... 17
- Calculus 1 .. 19
- Calculus 2 .. 21
- Computer & Society ... 22
- Computer Networks ... 24
- Data Science & Analytics .. 26
- Data Structures & Algorithms ... 28
- Databases .. 29
- Discrete Mathematics 1 ... 30
- Discrete Mathematics 2 ... 31
- Intelligent Systems ... 32
- Internships ... 34
- Introduction to Computer Organization ... 35
- Introduction to Digital System ... 36
- Linear Algebra .. 38
- Numerical Analysis .. 39
- Operating Systems ... 41
- Programming Foundations 1 ... 43
- Programming Foundations 2 ... 44
- Scientific Writing & Research Methodology ... 45
- Software Engineering .. 47
- Software Engineering Projects .. 49
- Statistics & Probability ... 50
- Systems Programming ... 51
- Web Design & Programming ... 53

5.2 Map of Course Prerequisites ... 54
1. About International Undergraduate Program in Computer Science/Information Technology

Faculty of Computer Science Universitas Indonesia (known as Fasilkom UI) is one of the foremost institutions in Indonesia which offers degree programs in computer science and information technology. Beginning from its roots, dating back to 1972, as a center for computer science, Fasilkom UI has played a key role in developing information technology in Indonesia, and continually delivers high-quality education, research, and services to meet the needs of its stakeholders.

Since 2002, Fasilkom UI has been establishing collaborations with several partner universities to offer an International Undergraduate Program in Computer Science/Information Technology. This program prepares its students to become graduates who can tackle challenges in the era of globalization, compete in regional and international job markets, and be able to pursue further advanced degrees. The program is run by highly qualified and experienced lecturers in the fields of Computer Science and Information Technology from involved institutions.

Our partners currently include:

- School of Information Technology and Electrical Engineering, University of Queensland (UQ), Australia.

 The School of Information Technology and Electrical Engineering at the University of Queensland is one of the largest and most prestigious of Australia’s universities. It is internationally acclaimed for its strength in teaching and research, and its qualifications are recognized worldwide.

 Degrees offered:
 Bachelor of Information Technology, Bachelor of Computer Science

- School of Computer Science and Information Technology, Royal Melbourne Institute of Technology (RMIT), Australia.

 The School of Computer Science and Information Technology at the Royal Melbourne Institute of Technology is a leading IT school in Australia, and aside from innovative and cutting-edge research, is well-known for its strong industrial links and balance between theory and practice.
Degrees offered:
Bachelor of Computer Science, Bachelor of Information Technology, Bachelor of Technology (Computing Studies)

- College of Engineering & Computer Science, Australian National University (ANU), Australia.

 The College of Engineering & Computer Science at the Australian National University is a leading center for research and education in Australia and committed to finding sustainable solutions to the world’s challenges.

 Degree offered: Bachelor of Advanced Computing (Honours)

- School of Information Technology, Deakin University, Australia.

 The School of Information Technology at Deakin University offers a broad range of first-rate, industry-informed courses that give students the knowledge and skills needed to make a difference. These are supported through active research groups, centres, and partnerships, which produce globally-capable information technology graduates of the future.

 Degree offered: Bachelor of Information Technology
2. Curriculum of International Undergraduate Program in Computer Science/Information Technology

Curriculum Design

All undergraduate programs at UI are organized into two terms (semesters) per academic year, where one term typically spans 16 weeks of academic activities. To weigh the load of courses offered in a term, UI employs a credit unit system, known as ‘sks’. One sks is equivalent to 1-hour (50 minutes) lecture followed by 60 minutes of structured learning activity (e.g., assignments) and 60 minutes of independent learning activity per week per term.

The International Undergraduate Program in Computer Science/Information Technology is designed as a 4-year program (8 terms), obtaining 144 sks in total. Depending on the degree offered by partner universities, the program is arranged into two alternative schemes.

- 2.5 + 1.5 scheme, i.e., term 1 – 5 at Fasilkom UI and term 6 – 8 at a partner university (UQ, RMIT, and Deakin University).

 Term 1: 20 sks
 Term 2: 18 sks
 Term 3: 19 sks
 Term 4: 19 sks
 Term 5: 18 sks

 Sufficient credit units (sks) collected up to term 5 are transferred to the partner university. The students then spend 6 - 8 at a partner university and must earn necessary credit units at the partner university to obtain a Bachelor degree from the partner university. Upon returning from the partner university, sufficient credit units obtained at the partner university is transferred to UI (equivalent to minimal 50 sks to fulfill 144 sks in total) to obtain the Bachelor degree from UI (Sarjana Ilmu Komputer).

- 2 + 2 scheme, i.e., term 1 – 4 at Fasilkom UI and term 5 – 8 at a partner university (ANU).

 Term 1: 20 sks
 Term 2: 18 sks
Term 3: 19 sks
Term 4: 19 sks

Sufficient credit units (sks) collected up to term 4 are transferred to the partner university. The student then spends 5 - 8 at a partner university and must earn necessary credit units at the partner university to obtain a Bachelor degree from the partner university. Upon returning from the partner university, sufficient credit units obtained at the partner university is transferred to UI (equivalent to minimal 68 sks to fulfill 144 sks in total) to obtain the Bachelor degree from UI (Sarjana Ilmu Komputer).

Curriculum Breakdown
The present Curriculum 2016 applies to students who enrolled in 2016 and after.

<table>
<thead>
<tr>
<th>No</th>
<th>Course Code</th>
<th>Course Name</th>
<th>sks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Term 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>UIST600141</td>
<td>Calculus 1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>UIST601111</td>
<td>Physics</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CSGE601010</td>
<td>Discrete Mathematics 1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CSGE601020</td>
<td>Programming Foundations 1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CSCM6011150</td>
<td>Introduction to Digital Systems</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>UIGE600003</td>
<td>English</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>20</td>
</tr>
<tr>
<td>Term 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CSGM602115</td>
<td>Calculus 2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CSGE601011</td>
<td>Discrete Mathematics 2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CSGE601021</td>
<td>Programming Foundations 2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CSCM601252</td>
<td>Introduction to Computer Organization</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CSGE602012</td>
<td>Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>UIGE60001*</td>
<td>Religious Studies</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
</tr>
<tr>
<td>Term 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CSGE602055</td>
<td>Operating Systems</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSGE602013</td>
<td>Statistics & Probability</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CSGE602040</td>
<td>Data Structures & Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CSGE602022</td>
<td>Web Design & Programming</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CSCM602241</td>
<td>Automata & Theory of Languages</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>UIGE6000**</td>
<td>Arts & Sports</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>19</td>
</tr>
<tr>
<td>Term 4</td>
<td>Course Code</td>
<td>Course Name</td>
<td>Sks</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>CSGE602070</td>
<td>Databases</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CSCM602023</td>
<td>Advanced Programming</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CSCM603130</td>
<td>Intelligent Systems</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CSCM603154</td>
<td>Computer Networks</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CSCM603125</td>
<td>Software Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL 19

<table>
<thead>
<tr>
<th>Term 5</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Sks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSCM603127</td>
<td>Systems Programming</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CSGE603291</td>
<td>Scientific Writing & Research Methodology</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>CSCM603217</td>
<td>Numerical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CSCM603228</td>
<td>Software Engineering Projects</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>CSGE614093</td>
<td>Computer and Society</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL 18

<table>
<thead>
<tr>
<th>Term 6-8</th>
<th>Course Name</th>
<th>Sks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-- overseas study --</td>
<td></td>
</tr>
</tbody>
</table>

The courses listed in the above table are mandatory courses required for obtaining the Bachelor degree from UI (Sarjana Ilmu Komputer).

- For the 2+2 scheme, the students have to complete the courses in term 5 with equivalent ones at the partner university.

- Independent from the choice of schemes (either 2.5+1.5 or 2+2), the students are still required to complete the following three UI's mandatory courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Sks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCM604142</td>
<td>Algorithms Design & Analysis</td>
<td>4</td>
</tr>
<tr>
<td>CSCM603234</td>
<td>Data Science & Analytics</td>
<td>3</td>
</tr>
<tr>
<td>CSGE604098</td>
<td>Internships</td>
<td>3</td>
</tr>
</tbody>
</table>

This requirement is typically fulfilled at the partner university by taking some equivalent courses.
3. Grading System

The grading system applied at Fasilkom UI follows that of Universitas Indonesia. The grades and their corresponding weights are shown below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.00</td>
</tr>
<tr>
<td>A-</td>
<td>3.70</td>
</tr>
<tr>
<td>B+</td>
<td>3.30</td>
</tr>
<tr>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>B-</td>
<td>2.70</td>
</tr>
<tr>
<td>C+</td>
<td>2.30</td>
</tr>
<tr>
<td>C</td>
<td>2.00</td>
</tr>
<tr>
<td>D</td>
<td>1.00</td>
</tr>
<tr>
<td>E</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Note that the minimum grade for passing a course is C. A student who does not pass a mandatory course is required to repeat the course.

In some situations, a student may obtain the following grades:

- Grade I is given in case of incomplete assessment in some of the grading components. This grade will not be taken into account in the calculation of the term GPA, but the final grade should be fixed within a month after the grade submission deadline. Otherwise, the academic system will automatically change the grade to E.
- Grade T is given in case a student does not satisfy the minimum presence requirement in following the academic activities of the course. This grade will be taken into account in the calculation of the term GPA with the weight of 0.

Term and Cumulative GPA

At the end of a term, each student will obtain a Term GPA (or, Indeks Prestasi Semester - IPS) and a Cumulative GPA (or, Indeks Prestasi Cumulative - IPK). The term GPA indicates the student’s academic performance in a term, whereas the cumulative GPA refers to the academic performance up to the current term, taking into account only passed courses.
The term GPA determines the maximum number of credits that a student may take in the subsequent term:

<table>
<thead>
<tr>
<th>Term GPA</th>
<th>Maximum credits (sks) that can be taken in the subsequent term</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2.00</td>
<td>12</td>
</tr>
<tr>
<td>2.00 - 2.49</td>
<td>15</td>
</tr>
<tr>
<td>2.50 - 2.99</td>
<td>18</td>
</tr>
<tr>
<td>3.00 - 3.49</td>
<td>21</td>
</tr>
<tr>
<td>3.50 - 4.00</td>
<td>24</td>
</tr>
</tbody>
</table>

The following example illustrates the calculation of the term and cumulative GPAs within two terms:

Term 1:

<table>
<thead>
<tr>
<th>No.</th>
<th>Courses</th>
<th>sks</th>
<th>Grade</th>
<th>Weight</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Programming Foundations 1</td>
<td>4</td>
<td>A</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Physics</td>
<td>3</td>
<td>C+</td>
<td>2.3</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>Calculus 1</td>
<td>3</td>
<td>C</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Discrete Mathematics 1</td>
<td>3</td>
<td>B</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>English</td>
<td>3</td>
<td>B-</td>
<td>2.7</td>
<td>8.1</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to Digital Systems</td>
<td>4</td>
<td>B</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>58</td>
</tr>
</tbody>
</table>

At the end of Term 1:
- Total credits of all courses taken at Term. 1 (TC1) = 20 sks
- Total credits of cumulative passed courses only (TCCum1) = 20 sks
- Total grade points of all courses taken at Term. 1 (TGP1) = 58
- Total grade points of cumulative passed courses (TGPCum1) = 58
- Term GPA = TGP1 / TC1 = 58/20 = 2.90
- Cumulative GPA = TGPCum1 / TCCum1 = 58/20 = 2.90

Given the Term GPA at Term 1 = 2.90, this student may take a maximum of 18 sks in the next term (Term 2).
Term 2:

<table>
<thead>
<tr>
<th>No.</th>
<th>Courses</th>
<th>sks</th>
<th>Grade</th>
<th>Weight</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear Algebra</td>
<td>3</td>
<td>B</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Religious Studies</td>
<td>2</td>
<td>B-</td>
<td>2.7</td>
<td>5.4</td>
</tr>
<tr>
<td>3</td>
<td>Programming Foundations 2</td>
<td>4</td>
<td>B-</td>
<td>2.7</td>
<td>10.8</td>
</tr>
<tr>
<td>4</td>
<td>Calculus 2</td>
<td>3</td>
<td>B+</td>
<td>3.3</td>
<td>9.9</td>
</tr>
<tr>
<td>5</td>
<td>Discrete Mathematics 2</td>
<td>3</td>
<td>B</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to Computer Organization</td>
<td>3</td>
<td>D</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td></td>
<td></td>
<td>47.1</td>
</tr>
</tbody>
</table>

At the end of Term 2:

- Total credits of all courses taken at Term. 2 (TC2) = 18 sks
- Total credits of cumulative passed courses only (TCCum2) = 20 sks (term 1) + 15 sks (term 2) = 35 sks
- Total grade points of all courses taken at Term. 2 (TGP2) = 47.1
- Total grade points of cumulative passed courses (TGPCum2) = 58 (term 1) + 44.1 (term 2) = 102.1
- Term GPA = TGP2 / TC2 = 47.1/18 = 2.62
- Cumulative GPA = TGPCum2 / TCCum2 = 102.1/35 = 2.92

Given the Term GPA at Term 2 = 2.62, this student may take a maximum of 18 sks in the next term (Term 3). Note that, this student is required to repeat the mandatory course “Introduction to Computer Organization” in a term when it is offered.
4. Study Evaluation & Graduation

UI conducts a regular study evaluation with respect to the student's academic performance. In particular, the academic performance is assessed at the end of term 2, 4, 6, 8, and 10. Note that the maximum study period for the undergraduate programs at UI is 12 terms.

A student will not be able to continue his/her study, if:

- at the end of the first two terms, the student does not obtain a minimum of 24 sks;
- at the end of the first four terms, the student does not obtain a minimum of 48 sks;
- at the end of the first six terms, the student does not obtain a minimum of 72 sks;
- at the end of the first eight terms, the student does not obtain a minimum of 96 sks;
- at the end of the first ten terms, the student does not obtain a minimum of 120 sks.

A student is considered graduated and obtains the degree Sarjana Ilmu Komputer (S.Kom.) from UI, only if he/she has obtained the minimum of 144 sks and fulfilled all the terms and conditions according to the running curriculum with the minimum cumulative GPA of 2.00.

Academic regulations concerning academic and administrative registrations, academic leaves, credit transfer, academic transcript, etc. are detailed in *Peraturan Rektor Universitas Indonesia Nomor 014 Tahun 2016 (Penyelenggaraan Program Sarjana di Universitas Indonesia)*.
5. Appendix

5.1 Syllabus
Advanced Programming

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Advanced Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM602023</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
</tbody>
</table>
| Prerequisites | • Programming Foundations 2
| | • Web Design & Programming |

Course Description

The course builds upon the basic programming techniques introduced in the introductory programming courses and offers the first introduction to the implementation of more complex real-world programs. It covers techniques for programming in the large and discusses advanced and latest emerging topics, including the latest technology for enterprise programming. It equips the students with the experience in designing, implementing, and maintaining moderately complex, realistically-sized programs using an agile software development methodology, taking into account the aspects of reusability, concurrency, documentation, and continuous integration.

Topics

Object Oriented Analysis & Design, Applying OO principles, Test-driven development, Software packaging and deployment, Scaling up software, Design patterns, Continuous Integration, Concurrency, High-level Networking, Familiarity with cloud deployment, Web services.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. be able to create multithreading programs
2. be able to synchronize their multithreading programs to avoid a race condition
3. be able to anticipate and detect possible deadlock in multithreading programs and to avoid deadlock when possible
4. be able to use advanced data structures and collections in Java
5. understand remote methods invocation in Java
6. be able to create a concurrent client-server programs
7. be able to develop, consume and deploy a web service into a cloud service
(8) be aware of agile software development practices including iteration, test-driven development, spiking, continuous customer involvement
(9) be able to design moderately complex programs where that design will typically incorporate a number of modules and a number of levels of refinement
(10) understand the role of software architecture in program design and have knowledge of a number of commonly-applied software architectures
(11) be able to make use of design patterns, reusable components and software libraries in designing modular software
(12) understand how to make design decisions that take into account desirable quality attributes such as flexibility, maintainability, and reusability
(13) be able to implement programs systematically using an integrated testing procedure in such a way that modules are highly likely to function as specified
(14) understand how to isolate faults within a program systematically
(15) be able to use software tools to aid in the program design and implementation process, including program design tools, integrated program development environments and debuggers
(16) be able to adequately document a software project

Learning Resources:

[5] Miller, Robert, and Max Goldman., “6.005 Software Construction.” MIT OpenCourseWare, Massachusetts Institute of Technology: MIT OpenCourseWare, 2016,

And all other latest references on related topics.
Algorithms Design & Analysis

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Algorithm Design & Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM604142</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Data Structures & Algorithms (or equivalent requirements by partner universities)</td>
</tr>
</tbody>
</table>

Course Description

This course discusses how to design and analyze algorithms for solving given problems. It focuses on two main issues, i.e., the correctness and the complexity of the algorithms. Several techniques and approaches will be discussed, including dynamic programming, greedy algorithms, graph algorithms, approximation algorithms, and NP-completeness.

Topics

Introduction to algorithms: bubble sort, insertion sort, selection sort, searching; Growth of functions; Algorithm analysis: worst-case, best-case, average-case; Divide and conquer; Quicksort; Mergesort; Recurrence relation: master method, method of substitution, recursion tree; Heap sort; Lower bound of comparison based sorting; Linear sorting: bucket sort, radix sort, counting sort; Order statistics: selection problem; Dynamic programming: LCS, Matrix-chain multiplication; Greedy algorithm: fractional knapsack, job scheduling, MST; Backtracking: 0/1 Knapsack; Backtracking, branch and bound; Graph algorithms: BFS, DFS, shortest path, maximum flow; Sorting networks, parallel algorithms; Approximation algorithms, NP-completeness.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. be able to design an algorithm to solve problems by employing design strategies, such as iterative, recursion, divide and conquer, dynamic programming, greedy approach, backtracking, branch and bound
2. be able to prove the correctness of an iterative algorithm
3. be able to analyze the complexity of an algorithm to represent it using standard notation
4. be able to recognize the complexity limitation within a computational model and to distinguish the various class of problems within that limitation.
Learning Resources

Automata & Theory of Languages

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Automata & Theory of Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM602241</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>• Discrete Mathematics 1</td>
</tr>
<tr>
<td></td>
<td>• Discrete Mathematics 2</td>
</tr>
</tbody>
</table>

Course Description

This course discusses theoretical models of computation and formal languages. It covers the underlying concept of theory of computation, several abstract machines as models of computation, including Turing Machines, formal languages such as context-free languages, and the limitation of computation.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) understand the fundamental concepts of theory of computation
(2) understand several abstract machines with their languages and expressions, and be able to design and develop such machines
(3) understand the limitation of computation
Learning Resources

Calculus 1

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Calculus 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>UIST601014</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Course Description

This course discusses basic concepts of calculus and emphasize its importance for solving scientific problems and providing the basis of many computational techniques.

Topics

The topics for this course are real numbers, complex number, inequalities and absolute values, one variable functions, graphs, function and its operations, limits and continuity of the functions of one variable, derivative and its applications, exponential and logarithmic functions, the notion of the integration, the techniques of integral calculations, the applications of the definite integral, and techniques of integrations.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) be able to explain the characteristics of real number systems and algebraic operations, and to solve inequalities involving absolute values.
(2) be able to classify functions based on certain criteria, draw graphs of simple functions, perform algebraic operations on functions
(3) be able to evaluate limits of algebraic and trigonometric functions, and limits of infinity.
(4) be able to analyze the continuity of functions on given intervals.
(5) be able to describe the geometrical interpretation of derivatives.
(6) be able to explain and apply the basic rules of differentiation.
(7) be able to approximate the value of functions at a certain point using differentials.
(8) be able to locate the extreme and the inflection points of continuous functions over closed intervals.
(9) be able to identify decreasing/increasing functions and the concavity of functions.
(10) be able to evaluate the integral of given functions and to apply it for calculating the average value of functions over an interval, area of region between curves, arc length, and volume of simple solids.
(11) be able to explain the definition of simple transcendental functions, relates those and their inverses, and evaluate the integral of those functions.
Learning Resources

Calculus 2

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Calculus 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM602115</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Calculus 1</td>
</tr>
</tbody>
</table>

Course Description

The course covers the advanced topics of calculus and builds upon the basic concepts of calculus introduced in the first part of the course.

Topics

Further techniques of Integration; Indeterminate forms of limits; Improper integral; Infinite sequences and series; Vector and Geometry Space; Multiple integral; Further Applications of Integral; Ordinary Differential Equations.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) be able to select and apply the right techniques to evaluate the integral of more complex functions.
(2) be able to select and apply the right procedure to evaluate indeterminate forms of limits, improper integral, and multiple integral.

Learning Resources

Computer & Society

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Computer & Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE614093</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Minimum sks of 48</td>
</tr>
</tbody>
</table>

Course Description

This course aims to raise the students' awareness and sensibility to various social and economic problems regarding the implementation of computer technologies in daily lives. The students will be exposed to some issues related to IT and are required to analyze the issues and to recommend some solutions from their point of view as a student of computer science.

Topics

Understanding the history and origin of computing; Understanding the social impacts of computer's technology; Understanding computer scientists' responsibility; Dealing with evolving new technology; Understanding the intellectual property issues

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. be able to analyze and recommend some solutions to the social, ethical and professional issues
2. be able to discuss the impacts of IT and to reflect on the corresponding social, ethical, and economic issues
3. be able to assess those issues based on the values on their profession
4. be able to develop professional responsibility

Learning Resources

There is no suggested textbook. Suggested reading materials will enrich students' understanding:

1. K.W. Bowyer, Ethics and computing, 1996
2. JA Senn, Information technology in business, 1995
(7) Current newspapers, magazines, and other newsletters
Computer Networks

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Computer Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM603154</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
</tbody>
</table>
| Prerequisites | • Operating Systems
 • Programming Foundations 1 |

Course Description

The course discusses the principles of computer networks and the internet. It emphasizes on the top-down approach of the computer networks and internet model, starting from the application layer on the top. It works its way down toward the transport, network, data link, and physical layers.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) differentiate an Internet based computer networks from other models of computer networks.
(2) apply the protocol concept in computer networks, as well as in daily life.
(3) analyze the communication between the client and server.
(4) compare and contrast between a connectionless and connection-oriented service.
(5) compare and contrast between circuit and packet switching.
(6) compare and contrast various network access and physical media.
(7) calculate various delay and loss in computer networks.
(8) compare and contrast various layered architectures and service models.
(9) analyze popular network applications, such as the web, file transfer, e-mail, directory services, and Point-to-Point (P2P) file sharing.
(10) analyze various services provided by the transport layer.
(11) analyze the message exchange over the Internet with a network analyzer, such as the Ethereal.
(12) analyze various services provided by the network layer.
(13) analyze various services provided by the transport layer.
(14) design, implement, and test a simple network application, using socket programming.

Learning Resources

Data Science & Analytics

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Data Science & Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM603234</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
</tbody>
</table>
| Prerequisites | • Statistics & Probability
 • Databases
 (or equivalent requirements by partner universities) |

Course Description

This course provides basic principles, techniques, and tools employed in data science and analytics for extracting valuable information or knowledge from data. The principles and techniques are discussed showing the importance of statistics, probability, database, machine learning and other computer science fields as their foundations.

The course touches upon concepts such as data collection and integrations, exploratory data analysis, statistical inferences, Bayesian modelling, and data visualization. Ethical aspects, privacy and security in data science and analytics will also be discussed during the course. This course emphasizes on how to perform the integration of the given principles and techniques to solve problems in data science and analytics.

Topics

The topics are including: (1) High Performance Data Analysis, Parallel Databases, (2) Parallel Query Processing, in-database analytics, (3) MapReduce, Hadoop, relationship to databases, algorithms, extensions, languages, (4) Key-value stores and NoSQL; tradeoffs of SQL and NoSQL, (5) Quantitative data analysis, basic concepts, experiment design, pitfalls, (6) Visualization, data products, visual data analytics, (7) Provenance, privacy, ethics, governance

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. apply techniques in data cleaning, sampling, and data management for accessing large-scale data efficiently and reliably
2. apply techniques in exploratory data analysis for generating hypotheses
3. apply techniques for prediction based on statistical methods such as regression and classification, and communicate the results through visualization.
Learning Resources

O’Neil, C. and Schutt, R. Doing Data Science: Straight Talk from the Frontline, 2013, O’Reilly Media
Data Structures & Algorithms

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Data Structures & Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE602040</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Programming Foundations 2</td>
</tr>
</tbody>
</table>

Course Description

The course discusses basic techniques for data abstractions and manipulation of such abstract structures through appropriate algorithms. It also introduces complexity analysis of space and time allocation in implementing algorithms.

Topics

The topics covered are: Abstract Data Types; Linear data model: lists, stacks, queues, sets; Searching; Sorting; Hierarchical data model: Tree; Binary Search Trees; AVL Tree; B-Tree; Binary Heap, Huffman Coding; Hash table; Graph representation and algorithms.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. select appropriate data structures for a given problem and implement them by following programming principles such as object-oriented (abstraction, encapsulation, information hiding, etc.).
2. implement algorithms for their manipulation, either from scratch or by modifying available resources, such as Java Collections API
3. compare different algorithms with respect to their efficiency through algorithm analysis

Learning Resources

Weiss, Mark Allen, Data Structures & Problem Solving using Java (3rd ed.), Addison-Wesley
Databases

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE602070</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Programming Foundations 2</td>
</tr>
</tbody>
</table>

Course Description

This course discusses the basic concepts of database management including the aspect of modeling and design, language and facility, implementation and the application of databases.

Topics

architecture and concept of database management system (DBMS), file structure and organization, indexing, data modeling using entity-relationship model, data modeling using relational model, formal query language, relational algebra, relational calculus, SQL and QBE, functional dependencies, normalization of relational database, algorithm and relational database design process, query processing and optimization, transaction, concurrency control, database recovery and client-server database.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. design database application correctly by evaluating all related requirements
2. given database queries, both simple and complex, students can apply SQL to complete those queries correctly
3. given a logical database schema, students can decide appropriate data types for each field and constraints for each table and implement Data Definition Language (DDL) and Data Manipulation Language (DML) in a Data Base Management Systems (DBMS).

Learning Resources

Discrete Mathematics 1

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Discrete Mathematics 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE601010</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Course Description

This course discusses various topics on Discrete Mathematics that provide theoretical foundations to support advanced study in computer science. Applications of each topic in computer science are also discussed.

Topics

Propositional logic, First-order predicate logic, Proofs, Sets and Functions, Mathematical induction, Sequences, Progressions, the Pigeonhole principle, Permutations, Combinations.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. Derive rigorous logical proofs given a set of premises using the rules of Propositional Logic and first-order predicate logic.
2. Perform basic operations of sets (union, intersection, difference, and complement)
3. Perform the basic operations of functions (inverse, composition)
4. Compare the process of mathematical induction and the behavior of other types of sequences.
5. Apply the pigeonhole principle in solving mathematical problems
6. Calculate numbers of possible outcomes of elementary combinatorial processes such as permutations and combinations.

Learning Resources

Discrete Mathematics 2

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Discrete Mathematics 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE601011</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Course Description

This course is a continuation of Discrete Mathematics 1 that provides further theoretical foundations for Computer Science.

Topics

Topics covered are: Theory of Integers, Relations, Graphs, and Trees.

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. Solve linear homogeneous / non homogeneous recurrence relations with constant coefficients
2. Understand the concepts of generating functions and use them to solve recurrence relations
3. Understand the concept of relations and their applications
4. Understand the properties of relations, closures of relation, equivalence relations, partial orderings and their applications in real-world problems
5. Understand the concepts of graphs and able to model problems using graphs
6. Understand the issues in graphs isomorphism, connectivity, Euler and Hamilton paths, shortest path problem, planar graphs and graph coloring.
7. Understand the concepts of trees and their applications
8. Understand tree traversal and able to construct (minimum) spanning trees from known graphs

Learning Resources

Intelligent Systems

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Intelligent Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM603130</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>• Statistics & Probability</td>
</tr>
<tr>
<td></td>
<td>• Data Structures & Algorithms</td>
</tr>
<tr>
<td></td>
<td>• Discrete Mathematics 1</td>
</tr>
</tbody>
</table>

Course Description

This course introduces basic concepts of artificial intelligence (AI) as well as a variety of approaches, techniques and methods in AI. The participants will be equipped with theoretical foundations and practical skills related to the development of intelligent (software) agents for solving a given problem.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) Understand the basic concepts of intelligent agents
(2) Apply state space search framework for modeling a problem and implement uninformed search algorithms for an agent to solve the problem
(3) Implement local search and heuristic techniques to overcome the complexity of the state space search
(4) Using symbolic logic as a knowledge representation language to model aspects of the real world and to reason with that knowledge
(5) Apply the principles of probabilistic reasoning and decision-making based on learning from data
(6) Apply adversarial search in game playing and understand the game theoretical framework in the setting of multiagent systems
Learning Resources

Internships

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Internships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE604098</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Minimum 100 sks</td>
</tr>
<tr>
<td></td>
<td>(or equivalent requirements by partner universities)</td>
</tr>
</tbody>
</table>

Course Description

This course provides an opportunity for students to enrich and apply their knowledge for solving real-world problems requiring IT in an organization.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. communicate and collaborate with others in a specific IT-related tasks.
2. apply their knowledge in computer science for solving the given problems in the organization where they do the internship.

Learning Resources
Introduction to Computer Organization

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Introduction to Computer Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM601252</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Introduction to Digital Systems</td>
</tr>
</tbody>
</table>

Course Description

This course provides the foundations of sequential computer organization consisting of input, output, memory, and processor (control and datapath). The understanding of these concepts will also be supported with some programming exercises using low-level languages, e.g., assembly languages.

Topics

(1) Performance (2) RISC vs CISC (3) MIPS Assembly Language (4) Arithmetic Unit (5) Processor: Datapath and Control (6) Processor: Pipeline (7) Memory System: RAM, ROM, Cache Memory (8) Introduction to AVR (9) Assembly Language Based on AVR (10) Input/Output Organization

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) Understand the basic concepts of computer organization
(2) Understand how to execute the machine language instruction
(3) access the components of computer systems, viz., input, output, memory, and processor (control and datapath) by means of assembly languages

Learning Resources

Introduction to Digital System

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Introduction to Digital System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM6011150</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Course Description

This course provides a basic understanding and practical aspects in designing digital systems using high-level programming language such as VHDL. The students will learn basic concepts in designing digital circuits, such as binary representation, Boolean algebra, finite-state-machine and instruction-set processors. They also learn basic components for design on different levels of abstractions such as transistors, gates, flip flops, adders, multipliers, registers, memories and processors.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. determine the required components in satisfying a specification of a digital system
2. understand the behavior of those components and their interaction required for achieving the functionality of a digital system
3. integrate those components into a digital system design
4. simulate the resulting digital system design to evaluate its behavior
Learning Resources

Linear Algebra

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Linear Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE602012</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Calculus 1 (may be taken at the same time)</td>
</tr>
</tbody>
</table>

Course Description

This course prepares the students to be able to solve problems about matrix algebra and vector spaces. It also discusses the application of linear algebra in computer science.

Topics

Linear equation systems, matrices, determinant, vector spaces, inner product spaces, Eigen value and Eigen vector, and linear transformation

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. identify linear transformations, determine the standard matrix of a given linear transformation, interpret the properties of linear transformation on a plane and space.
2. given a square matrix, students are able to find the eigen values and their related eigen vectors, and use the result to diagonalize the matrix
3. given a system of linear equations, students are able to select the right method to solve or to calculate the least square approximation.

Learning Resources

Numerical Analysis

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Numerical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM603217</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>• Linear Algebra</td>
</tr>
<tr>
<td></td>
<td>• Calculus 2</td>
</tr>
</tbody>
</table>

Course Description

The course provides the basic knowledge of numerical methods to solve scientific and engineering problems. The students are trained to solve problems that require numerical analysis, e.g., using Matlab as the programming environment. Practical issues in implementing numerical methods, such as software reliability and hardware performance are also discussed.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) understand the relation between the problems in science and engineering and the needs of numerical softwares to solve the problems.
(2) understand the fundamental of programming and visualization in Matlab and able to write and run the Matlab codes.
(3) understand the number representation in computers.
(4) understand some polynomial interpolation techniques and apply the techniques to interpolate some numerical data.
(5) understand some numerical technique to solve linear systems and use Matlab as the tools.
(6) understand some numerical techniques to solve non-linear equation and use Matlab as the tools.
(7) understand some numerical techniques to solve integration and use Matlab as the tools.
(8) understand some numerical methods for solving ordinary differential equations using Matlab as the tools.
(9) understand some least squares methods to use them to solve some problems using Matlab as the tools.

Learning Resources

Operating Systems

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Operating Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE602055</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Introduction to Computer Organization</td>
</tr>
</tbody>
</table>

Course Description

This course discusses the organization, structure and concepts of computer operating systems. The trade-off between the performance and the functionality in designing and implementing an operating system is discussed, with the emphasis on processes management, interprocess communication, memory management, I/O management, file system management, implementation examples (GNU/Linux and MS Windows), and the support provided by operating systems for distributed systems.

Topics

Introduction & computer systems overview: processor, instruction execution, interrupts, memory hierarchy, cache memory and I/O communications; Operating System Overview: operating systems objective and functions, history, design, interface, system calls, architecture, virtual machines, generation and boot; Process: concept and threads; Process: CPU scheduling; Process: process synchronization; Process: deadlocks; Memory: background, swapping, paging, segmentation; Virtual memory: background, demand-paging, copy-on-write, page replacement; Virtual memory: allocation of frames, trashing, memory-mapped files and allocating kernel memory; Input/Output and Disk Management; File Management; Protection and Security; Distributed Systems

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. understand the role of an operating system
2. understand how to decompose programs and executions
3. understand the main concept of concurrency, its problems, and solutions
4. explain the concepts of process management and memory management
5. explain the mechanism and the algorithms of CPU scheduling
6. understand the idea and the implementation of virtual memory
7. understand the features and concepts of file systems and I/O devices
8. analyze issues related to performance of an operating system in managing hardwares
Learning Resources

(1) A. Silberschatz, Operating systems concepts with Java 7th edition.
Programming Foundations 1

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Programming Foundations 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE601020</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Course Description

This course aims to teach the fundamental concepts and techniques of computer programming by means of Python programming language. This module is taught using a combination of lectures and hands-on programming exercises.

Topics

Introduction to computers and programming; Data Types; Control; Data Structures and Functions; Introduction to object oriented programming; Files; Exceptions; Recursion; Graphical User Interface (GUI)

Learning Objectives

Upon successful completion of this course, the students are expected to be able to develop algorithmic thinking for solving problems systematically and computationally.

Learning Resources

Programming Foundations 2

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Programming Foundations 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE601021</td>
</tr>
<tr>
<td>Credits</td>
<td>4 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Programming Foundations 1</td>
</tr>
</tbody>
</table>

Course Description

This course is the second part of the two-course Programming Foundations. It is built upon the knowledge and experience from the first part of Programming Foundations to enhance the programming skill. It specifically focuses on the object-oriented programming paradigm (using Java) and emphasizes the use of this paradigm in problem solving.

Topics

Classes & Objects; Fundamental Data Types: Primitive & Object Types; Control Flow (Decision and Loop); Methods & Access Specifier; Introduction to Objects and Classes; Arrays, Arrays of Objects; Array Lists; Sorting and Searching; Advanced Recursion; Inheritance; Polymorphism: Abstract Class, Interfaces, etc; Graphical User Interfaces; Input/Output and Exception Handling; Generic Collections: List, Map, Set, Stack, Queue; Generic Programming: Generic Classes & Methods; Unit Testing

Learning Objectives

Upon successful completion of this course, the students are expected to have developed further programming skills (from algorithm to coding, abstraction, simple design modularity, inheritance, etc.) and to apply best practices from the object-oriented programming paradigm.

Learning Resources

Scientific Writing & Research Methodology

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Scientific Writing & Research Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE603291</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>English</td>
</tr>
</tbody>
</table>

Course Description

This course focuses on methodology for doing research in computer science and develops students' scientific and critical thinking. It is also intended to enrich students' comprehension of the structure and execution of the written academic papers in reporting their research results. It involves the understanding of the process of writing, the techniques used in writing, and the writing itself. The development of writing should be an integrated approach of human-data-information-knowledge-tool interaction which may result in a sound and readable academic writing.

Topics

Course Overview; Introduction to research methodology and A Model of Scientific Inquiry; Problem identification & Hypothesis, Logical Thinking; Review of Literature: compare, contrast, criticize, synthesize, and summarize papers; Scientific Writing: dissertation, thesis, papers, etc; Writing Research Proposals & Reports; Research Design; Research Design; Class presentation; Class presentation; Experimental Research in CS, IS, and IT; Experimental Research in CS, IS, and IT; Survey Research in IT; Data Collection, Data Analysis, and Data Presentation

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. understand the basic process in conducting research
2. explore various approaches in doing research
3. employ scientific methods and critical thinking in research
4. explore various approaches in developing academic writing
5. conduct a mini research and produce an academic paper reporting the research results.
Learning Resources

(2) Wilson Jr., E.B. "An Introduction to Scientific Research Methods"
(6) Additional readings will be assigned during lectures
Software Engineering

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM603125</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Programming Foundations 2</td>
</tr>
</tbody>
</table>

Course Description

This course discusses software engineering methodologies and life cycles, from requirements gathering, planning, analysis, design, implementation, and testing.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. determine a proper process model in engineering software based on some specific conditions
2. model software specification in various stages: requirement gathering, analysis, and design.
3. apply various strategies in software testing

Learning Resources

Software Engineering Projects

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Software Engineering Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM603228</td>
</tr>
<tr>
<td>Credits</td>
<td>6 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>• Software Engineering</td>
</tr>
<tr>
<td></td>
<td>• Databases</td>
</tr>
</tbody>
</table>

Course Description

The course provides the students with the experience to be actively involved in one semester software engineering project by running a complete software development lifecycle, from ideation until deployment. Practical issues related to development methodology and technology used will be discussed.

Topics

(1) Working in team, communication skill (2) Product visibility, ideation (3) Development and deployment, continuous integration (4) Software testing, test coverage (5) Maintainability, refactoring, changes management (6) Security, privacy (7) Documentation (8) Scalability, profiling

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. plan, manage, implement, and evaluate an IT project.
2. apply standard techniques of software engineering and IT project management.
3. apply good soft skills of software engineer.

Learning Resources

Faculty of Computer Science
Universitas Indonesia

Statistics & Probability

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Statistics & Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE602013</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>- Calculus 1</td>
</tr>
<tr>
<td></td>
<td>- Discrete Mathematics 1</td>
</tr>
</tbody>
</table>

Course Description

This course provides basics of statistics and probability for data interpretation in order to support problem solving and decision making.

Topics

Introduction; Descriptive Statistics; Sampling Techniques; Elements of Probability: Events and outcomes. Probability rules. Conditional probability. Independence; Bayes' rule; Random variables and their distribution; Discrete random variables. Special Discrete distributions: Bernoulli, Binomial, Geometric; Negative Binomial, Poisson; Continuous distribution and probability densities; Continuous distribution: Uniform, Exponential, Normal; Expectation; Central Limit Theorem; Statistical inference. Parameter and statistics; Distribution of Sampling Statistics; Parameter estimation and hypothesis testing

Learning Objectives

Upon successful completion of this course, the students should be able to explain the concept of probability, random variables, descriptive statistics, and inferential statistics and to apply them for solving problems pertaining to stochastic or combinatorics statistical phenomena.

Learning Resources

(2) A Modern Introduction to Probability and Statistics, Understanding Why and How, Frederik Michel Dekking et al., Springer, 2005
Systems Programming

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Systems Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSCM603127</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>• Operating Systems</td>
</tr>
<tr>
<td></td>
<td>• Data Structures & Algorithms</td>
</tr>
</tbody>
</table>

Course Description

This course further discusses the concepts of operating systems, especially GNU/Linux, with an emphasize on the practical aspects. The students will be introduced to the different layers of implementation on operating systems, such as process management, file systems, IPC, socket network, and kernel structures. Practical exercises are realized on C/C++ language and some scripting tools for files manipulation.

Topics

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

(1) be familiar with Linux file systems, process management, and the structures of Linux kernel
(2) explain the different layers of operating systems and their implementations
(3) develop the utilities similar to the UNIX standard (e.g: mv, rm) using UNIX basic system calls and its facilities to manipulate the screen (for text-based editors, menu-driven systems, forms, etc.)

Learning Resources

5. The Linux Kernel Module Programming Guide
Web Design & Programming

General Information

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Web Design & Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>CSGE602022</td>
</tr>
<tr>
<td>Credits</td>
<td>3 sks</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Programming Foundations 1</td>
</tr>
</tbody>
</table>

Course Description

This course starts with HTML and CSS (Cascading Style Sheet) as the basic components in a web page. It subsequently discusses the development dynamic web pages (using Javascript) and Ajax programming. The course also touches upon server-side programming and web security.

Topics

Introduction to Web Design and Programming (HTML and CSS); Introduction to Framework, Server Side Programming with Django; TDD with Django; HTML 5; CSS & Assets; Javascript & JQuery; Ajax, JSON, XML; Introduction to API: Web Services; Session, Cookie, Authentication; Introduction to Web Security & High Availability

Learning Objectives

Upon successful completion of this course, the students are expected to have the following abilities:

1. be able to design and implement a website
2. be able to develop a dynamic website employing server-side programming by means of a web framework

Learning Resources

5.2 Map of Course Prerequisites